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Abstract—Baruol (1) and Leonal (2), first examples of tetracyclic triterpenes possessing a D:B-friedobaccharane skeleton, were iso-
lated fromMaytenus blepharodes andM. chiapensis, respectively. Their structures were established by spectroscopic analysis, mole-
cular modeling studies and biogenetic background. The implication of the D:B-friedobaccharenyl cation in the biosynthetic route of
baccharane and shionane skeletons is discussed. Baruol exhibited b-glucuronidase inhibitory activity, a target in the search for
hepatoprotective agents.
� 2004 Elsevier Ltd. All rights reserved.
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Figure 1. Structures of Baruol (1) and Leonal (2).
The species of the Celastraceae have a long history in
traditional medicine, and they produce an extraordinary
variety of bioactive metabolites. Triterpenoids from the
Celastraceae belonged to the lupane, oleane, friedelane,
taraxerane, glutinane, ursane, and dammarane series.1

Reports on triterpenoids of the baccharane type are
scant in the field of natural products and with few excep-
tion, restricted to terrestrial plants.2 Hosenkol-A, with a
pentacyclic skeleton, and sasanquol, a 3,4-seco-tricyclic
triterpene, were the first occurring baccharane and
D:B-friedobaccharane triterpenoids, reported.3 Here
we inform about the isolation and structure elucidation
of two triterpenes (1 and 2) (Fig. 1) from Maytenus
blepharodes and M. chiapiensis, which we have named
Baruol and Leonal, respectively.4 To the best of our
knowledge, they represent the first examples of tetracy-
clic triterpenes possessing a D:B-friedobaccharane skele-
ton. D:B-friedobaccharenyl cation (Scheme 1) had been
postulated as an intermediate between baccharane and
shionane series,3 but no compound that could justified
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this had been isolated up to now. Baruol (1) exhibited
b-glucuronidase inhibitory activity (57% of inhibition
at 10lg/mL), which is correlated to hepatoprotective
activity.5

Baruol (1)6 (½a�20D þ 14, c 1.26, CHCl3) was purified after
repeated chromatography of the n-hexane/Et2O (1:1)
extract of the root bark of M. blepharodes on silica gel
and Sephadex LH-20, and final purification was
achieved by HPTLC using n-hexane/Et2O (1:1) as elu-
ent. Its HREIMS gave the molecular formula as
C30H50O (M+, m/z 426.3818, calcd 426.3862), which
implied six degrees of unsaturation accounted by two
double bonds and four rings. The IR spectrum revealed
the presence of a hydroxyl group (3438cm�1). Its NMR
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Table 1. NMRa spectral data (d, CDCl3) for Baruol (1)

No. dH (mult, J in Hz) dC
b HMBC

1 1.48 18.1

2 1.71, 1.86 27.8

3 3.47 br t (2.8) 76.3 1, 4,c 5

4 40.8

5 142.0

6 5.61 t (3.3) 122.0 4, 7,c 8, 10

7 1.85 23.7

8 1.44 44.7

9 35.6

10 2.08 50.0

11 1.34, 1.65 34.2

12 1.58, 1.60 32.8

13 36.5

14 38.0

15 1.22, 1.32 29.3

16 1.53, 1.61 34.6

17 31.9

18 1.18, 1.69 44.5

19 1.14, 1.24 43.3

20 2.00 23.2

21 5.10 t (6.8) 125.3 21, 22

22 130.8 29, 30

23 1.04 29.0 3, 4,c 5, 24

24 1.14 25.4 3, 4,c 5, 23

25 0.91 17.5 8, 9,c 10, 11

26 0.98 15.2 8, 13, 14,c 15

27 1.07 20.2 12, 13,c 14, 15

28 0.89 32.9 16, 17,c 18, 19

29 1.60 17.6 21, 22,c 30

30 1.68 25.7 21, 22,c 29

aData collected at 400MHz (1H) and 100MHz (13C).
b 13C multiplicities were assigned from DEPT or 1H, 13C-HSQC

experiments.
c Two-bond coupling enhancement observed.
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Scheme 1. Proposed biosynthetic route for the formation of Baruol (1) and Leonal (2).
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data (Table 1) showed the presence of eight methyl
groups, one secondary alcohol (dH 3.47, br t, and dC
76.3ppm, H-3), two trisubstituted double bonds (dH
5.10, t, J = 6.8Hz, dC 125.3ppm, and dH 5.61, t,
J = 3.3Hz, dC 122.0ppm), in addition to 10 methylenes,
2 methines, and 7 quarternary carbons. These data,
along with analysis of the EIMS fragmentation (Fig.
2), and comparison with the NMR data of glutinane
triterpenes7 suggested that 1 was a tetracyclic triterpene
with two trisubstituted double bonds and one secondary
alcohol.

The full assignments and connectivities were determined
by 1H–1H COSY, HSQC, and HMBC spectra. The hydr-
oxyl group was placed at C-3 from the HMBC correla-
tions, which linked the signal at dH 3.47ppm to C-1 (dC
18.1) and C-5 (dC 142.0). The double bonds were sited at
C-6 and C-21 as correlations linked the signal at dH 5.61
to C-4 (dC 40.8), C-7 (dC 23.7), C-8 (dC 44.7), and C-10
(dC 50.0), and the signal at dH 5.10 to C-29 (dC 17.6) and
C-30 (dC 25.7) (Table 1). The relative configuration at
C-3 and C-17 was solved by a ROESY experiment,
showing NOE correlations to H-3eq to H-23 and H-24,
and H-19 to H-27, and by the J-value for H-3 (br t,
x1/2 = 2.8Hz), which was supported by molecular mode-
ling studies.8 All these data, and biogenetic background9

allowed us to propose the structure of Baruol (1) as D:B-
friedobaccharan-5,21-dien-3-ol.

The molecular formula of Leonal (2)10 (Fig. 1) was
established as C30H48O2 (M+, m/z 440.3651, calcd
440.3654). Its spectroscopic data (IR, UV, 1H, and 13C
data and 2D experiments) showed 2 to be related to 1,
with the most notable differences being the presence of
an aldehyde group (dH 9.38 and dC 195.3ppm), which
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Figure 2. Intensive fragment peaks in EIMS of Baruol (1).
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correlated to C-21 (dC 155.5), C-22 (dC 138.9), and C-29
(dC 9.1) in the HMBC experiment, and the absence of
the methyl group on a double bond at dH 1.68 (H-30).
The relative configuration at C-3 and C-17 was solved
by a ROESY experiment, and that of the aldehyde
group was determined by a GOESY experiment, show-
ing NOE effect between H-21 (dH 6.48) and H-30 (dH
9.38). The above data led us to propose the structure
of 2 as D:B-friedobaccharan-5,21-dien-3-ol-30-al.

The plant triterpenoids are biogenetically originated
from oxidosqualene, through carbocationic intermedi-
ates.9 The biogenesis of baccharane and shionane skele-
tons has been conceived as originated from dammarenyl
cation via Friedo rearrangement (Scheme 1). Expansion
of the D-ring of this cation is envisaged to furnish the
baccharenyl cation, which by further cyclization, involv-
ing the olefinic bond, generated the lupenyl cation. An
alternative pathway available implied the D:B-friedo-
baccharenyl cation; further methyl shift of this cation
leads to shionane skeleton. On the other hand, deproto-
nation from C-6 gives D:B-friedobaccharan-5,21-diene
triterpenes.

Celastraceae are able to biosynthesize, among others,
pentacyclic (friedelane, glutinane) and tetracyclic (D:B-
friedobaccharane) triterpenes with identical substitution
partners in the B, C, and D rings. Up to now, the nor-
triterpene methylene quinones isolated from Celas-
traceae (e.g., celastrol) have a friedelane skeleton.
Russulaflavidin, a 24,26-bisnorshionane,11 with the
same chromophore group than the Celastraceae qui-
nones, was recently isolated from Russula flavisa (Agari-
cales). This compound could be considered as being
formally derived from shionanyl cation, which is in the
biosynthetic route of the baccharenyl cation, this last
being a precursor of the friedelanyl cation (Scheme 1).
This relationship between the baccharenyl and shiona-
nyl cations would make us expect that triterpenes and
quinones with shionane skeleton could be isolated from
Celastraceae. All this is strongly supported by the fact
that the compounds reported in this work and the shion-
anyl cation have the common intermediate, D:B-friedo-
baccharenyl cation.

Compounds 1 and 2 have a novel tetracyclic D:B-friedo-
baccharane skeleton, and strongly corroborate the
postulated biosynthesis of shionane via D:B-friedobac-
charane. Their presence in species of the Celastraceae
family might have chemotaxonomic and phylogenetic
importance, and the interesting biological properties
showed by similar products encouraged us to pursue
the study of these singular products. Baruol (1) was
tested for biological activity: antimicrobial12

(MIC > 20lg/mL), cytotoxic13 (IC50 > 20lg/mL), and
xanthine oxidase (9% of inhibition at 10lg/mL),
b-glucuronidase (57% of inhibition at 10lg/mL), and
b-glucosidase (5% of inhibition at 20lg/mL) inhibitory
effect.14 Leonal (2) could not be assayed as it was
unstable.
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